Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 9/(9n^2+21n-8) 9/(9n^2+21n-8)
  • (3-sin*n)/n-lnn (3-sin*n)/n-lnn
  • 1/(1+n^2) 1/(1+n^2)
  • e^(-n) e^(-n)
  • Identical expressions

  • (x-arctgx)/x^ two
  • (x minus arctgx) divide by x squared
  • (x minus arctgx) divide by x to the power of two
  • (x-arctgx)/x2
  • x-arctgx/x2
  • (x-arctgx)/x²
  • (x-arctgx)/x to the power of 2
  • x-arctgx/x^2
  • (x-arctgx) divide by x^2
  • Similar expressions

  • (x+arctgx)/x^2

Sum of series (x-arctgx)/x^2



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \    x - acot(x)
  \   -----------
  /         2    
 /         x     
/___,            
n = 1            
$$\sum_{n=1}^{\infty} \frac{x - \operatorname{acot}{\left(x \right)}}{x^{2}}$$
Sum((x - acot(x))/x^2, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{x - \operatorname{acot}{\left(x \right)}}{x^{2}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{x - \operatorname{acot}{\left(x \right)}}{x^{2}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
oo*(x - acot(x))
----------------
        2       
       x        
$$\frac{\infty \left(x - \operatorname{acot}{\left(x \right)}\right)}{x^{2}}$$
oo*(x - acot(x))/x^2

    Examples of finding the sum of a series