Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • n^2*sin(5/(3^n)) n^2*sin(5/(3^n))
  • x^n/(1-x^n)
  • 762.5*(0.525*0.475)^n 762.5*(0.525*0.475)^n
  • 1,04348*10^7 1,04348*10^7
  • Identical expressions

  • u(one . seven *n)*(sin(four * zero . seventy-eight (zero . one hundred and eighty-four - one . seven *n)))/ four * zero . seventy-eight (zero . one hundred and eighty-four - one . seven *n)
  • u(1.007 multiply by n) multiply by ( sinus of (4 multiply by 0.78(0.184 minus 1.007 multiply by n))) divide by 4 multiply by 0.78(0.184 minus 1.007 multiply by n)
  • u(one . seven multiply by n) multiply by ( sinus of (four multiply by zero . seventy minus eight (zero . one hundred and eighty minus four minus one . seven multiply by n))) divide by four multiply by zero . seventy minus eight (zero . one hundred and eighty minus four minus one . seven multiply by n)
  • u(1.007n)(sin(40.78(0.184-1.007n)))/40.78(0.184-1.007n)
  • u1.007nsin40.780.184-1.007n/40.780.184-1.007n
  • u(1.007*n)*(sin(4*0.78(0.184-1.007*n))) divide by 4*0.78(0.184-1.007*n)
  • Similar expressions

  • u(1.007*n)*(sin(4*0.78(0.184-1.007*n)))/4*0.78(0.184+1.007*n)
  • u(1.007*n)*(sin(4*0.78(0.184+1.007*n)))/4*0.78(0.184-1.007*n)

Sum of series u(1.007*n)*(sin(4*0.78(0.184-1.007*n)))/4*0.78(0.184-1.007*n)



=

The solution

You have entered [src]
  15                                                      
_____                                                     
\    `                                                    
 \       1007*n    /39*4 / 23   1007*n\\                  
  \    u*------*sin|----*|--- - ------||                  
   \      1000     \ 50  \125    1000 //                  
    )  ---------------------------------*39               
   /                   4                    / 23   1007*n\
  /    ------------------------------------*|--- - ------|
 /                      50                  \125    1000 /
/____,                                                    
n = 0                                                     
$$\sum_{n=0}^{15} \frac{39 \frac{\frac{1007 n}{1000} u \sin{\left(\frac{4 \cdot 39}{50} \left(\frac{23}{125} - \frac{1007 n}{1000}\right) \right)}}{4}}{50} \left(\frac{23}{125} - \frac{1007 n}{1000}\right)$$
Sum(((((u*(1007*n/1000))*sin((39*4/50)*(23/125 - 1007*n/1000)))/4)*39/50)*(23/125 - 1007*n/1000), (n, 0, 15))
The answer [src]
         /            /503373\             /424827\            /346281\            /271323\            /581919\           /53547\           /114231\           /110643\           /76752\           /192777\           /189189\           /37479\          /32097\          /4641\          /7137\\
         |  167791*sin|------|   119823*sin|------|   79911*sin|------|   48699*sin|------|   44763*sin|------|   9611*sin|-----|   8787*sin|------|   8511*sin|------|   7872*sin|-----|   4943*sin|------|   4851*sin|------|   1922*sin|-----|   823*sin|-----|   714*sin|----|   183*sin|----||
         |            \12500 /             \12500 /            \12500 /            \ 6250 /            \12500 /           \ 2500/           \ 6250 /           \12500 /           \ 3125/           \ 6250 /           \12500 /           \ 3125/          \12500/          \125 /          \1250/|
-39273*u*|- ------------------ - ------------------ - ----------------- - ----------------- - ----------------- - --------------- - ---------------- - ---------------- - --------------- - ---------------- - ---------------- - --------------- - -------------- - ------------- - -------------|
         \         1000                 1000                 1000                250                 200                200               250                1000               125                50                200                125              1000              5               50     /
---------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------
                                                                                                                                               200000                                                                                                                                              
$$- \frac{39273 u \left(- \frac{44763 \sin{\left(\frac{581919}{12500} \right)}}{200} - \frac{167791 \sin{\left(\frac{503373}{12500} \right)}}{1000} - \frac{119823 \sin{\left(\frac{424827}{12500} \right)}}{1000} - \frac{79911 \sin{\left(\frac{346281}{12500} \right)}}{1000} - \frac{9611 \sin{\left(\frac{53547}{2500} \right)}}{200} - \frac{4851 \sin{\left(\frac{189189}{12500} \right)}}{200} - \frac{8511 \sin{\left(\frac{110643}{12500} \right)}}{1000} - \frac{823 \sin{\left(\frac{32097}{12500} \right)}}{1000} - \frac{183 \sin{\left(\frac{7137}{1250} \right)}}{50} - \frac{1922 \sin{\left(\frac{37479}{3125} \right)}}{125} - \frac{8787 \sin{\left(\frac{114231}{6250} \right)}}{250} - \frac{7872 \sin{\left(\frac{76752}{3125} \right)}}{125} - \frac{4943 \sin{\left(\frac{192777}{6250} \right)}}{50} - \frac{714 \sin{\left(\frac{4641}{125} \right)}}{5} - \frac{48699 \sin{\left(\frac{271323}{6250} \right)}}{250}\right)}{200000}$$
-39273*u*(-167791*sin(503373/12500)/1000 - 119823*sin(424827/12500)/1000 - 79911*sin(346281/12500)/1000 - 48699*sin(271323/6250)/250 - 44763*sin(581919/12500)/200 - 9611*sin(53547/2500)/200 - 8787*sin(114231/6250)/250 - 8511*sin(110643/12500)/1000 - 7872*sin(76752/3125)/125 - 4943*sin(192777/6250)/50 - 4851*sin(189189/12500)/200 - 1922*sin(37479/3125)/125 - 823*sin(32097/12500)/1000 - 714*sin(4641/125)/5 - 183*sin(7137/1250)/50)/200000

    Examples of finding the sum of a series