oo ___ \ ` \ 2*n + 1 ) ----------------- / n*(n + 2)*(n + 4) /__, n = 1
Sum((2*n + 1)/(((n*(n + 2))*(n + 4))), (n, 1, oo))
True
False
0 0 7 -1 + 4*e -7 + 3*e -- + ------------- + -------------- 12 / 0\ / 0\ 9*\-8 + 8*e / 12*\-8 + 8*e /
7/12 + (-1 + 4*exp_polar(0))/(9*(-8 + 8*exp_polar(0))) + (-7 + 3*exp_polar(0))/(12*(-8 + 8*exp_polar(0)))
x^n/n
(x-1)^n
1/2^(n!)
n^2/n!
x^n/n!
k!/(n!*(n+k)!)
csc(n)^2/n^3
1/n^2
1/n^4
1/n^6
1/n
(-1)^n
(-1)^(n + 1)/n
(n + 2)*(-1)^(n - 1)
(3*n - 1)/(-5)^n
(-1)^(n - 1)*n/(6*n - 5)
(-1)^(n + 1)/n*x^n
(3*n - 1)/(-5)^n