Mister Exam

Other calculators


(20)/(5n-3)(5n+2)

Sum of series (20)/(5n-3)(5n+2)



=

The solution

You have entered [src]
  oo                   
 ___                   
 \  `                  
  \      20            
   )  -------*(5*n + 2)
  /   5*n - 3          
 /__,                  
n = 1                  
$$\sum_{n=1}^{\infty} \frac{20}{5 n - 3} \left(5 n + 2\right)$$
Sum((20/(5*n - 3))*(5*n + 2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{20}{5 n - 3} \left(5 n + 2\right)$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{20 \left(5 n + 2\right)}{5 n - 3}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(5 n + 2\right)^{2} \left|{\frac{1}{5 n - 3}}\right|}{5 n + 7}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer
The series diverges
The graph
Sum of series (20)/(5n-3)(5n+2)

    Examples of finding the sum of a series