Mister Exam

Other calculators


(3^n-1)/n!
  • How to use it?

  • Sum of series:
  • (3^n-1)/n! (3^n-1)/n!
  • n^3/2^n n^3/2^n
  • (2n-1)/2^n (2n-1)/2^n
  • 1/(n+1)! 1/(n+1)!
  • Identical expressions

  • (three ^n- one)/n!
  • (3 to the power of n minus 1) divide by n!
  • (three to the power of n minus one) divide by n!
  • (3n-1)/n!
  • 3n-1/n!
  • 3^n-1/n!
  • (3^n-1) divide by n!
  • Similar expressions

  • (3^n+1)/n!

Sum of series (3^n-1)/n!



=

The solution

You have entered [src]
  oo        
____        
\   `       
 \     n    
  \   3  - 1
  /   ------
 /      n!  
/___,       
n = 0       
$$\sum_{n=0}^{\infty} \frac{3^{n} - 1}{n!}$$
Sum((3^n - 1)/factorial(n), (n, 0, oo))
The radius of convergence of the power series
Given number:
$$\frac{3^{n} - 1}{n!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{3^{n} - 1}{n!}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{\left(3^{n} - 1\right) \left(n + 1\right)!}{\left(3^{n + 1} - 1\right) n!}}\right|$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
The answer [src]
      3
-E + e 
$$- e + e^{3}$$
-E + exp(3)
Numerical answer [src]
17.3672550947286225055682421832
17.3672550947286225055682421832
The graph
Sum of series (3^n-1)/n!

    Examples of finding the sum of a series