Mister Exam

Other calculators


3*(pi/2)^(n-1)

Sum of series 3*(pi/2)^(n-1)



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \          n - 1
  \     /pi\     
  /   3*|--|     
 /      \2 /     
/___,            
n = 1            
$$\sum_{n=1}^{\infty} 3 \left(\frac{\pi}{2}\right)^{n - 1}$$
Sum(3*(pi/2)^(n - 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$3 \left(\frac{\pi}{2}\right)^{n - 1}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 3 \left(\frac{\pi}{2}\right)^{n - 1}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\left(\frac{\pi}{2}\right)^{- n} \left(\frac{\pi}{2}\right)^{n - 1}\right)$$
Let's take the limit
we find
False

False

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer
The series diverges
The graph
Sum of series 3*(pi/2)^(n-1)

    Examples of finding the sum of a series