Mister Exam

Other calculators


(3*n/(9*n-1))^n

Sum of series (3*n/(9*n-1))^n



=

The solution

You have entered [src]
  oo            
____            
\   `           
 \             n
  \   /  3*n  \ 
  /   |-------| 
 /    \9*n - 1/ 
/___,           
n = 1           
n=1(3n9n1)n\sum_{n=1}^{\infty} \left(\frac{3 n}{9 n - 1}\right)^{n}
Sum(((3*n)/(9*n - 1))^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
(3n9n1)n\left(\frac{3 n}{9 n - 1}\right)^{n}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(3n9n1)na_{n} = \left(\frac{3 n}{9 n - 1}\right)^{n}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((3(n+1)9n+8)n1(3n9n1)n)1 = \lim_{n \to \infty}\left(\left(\frac{3 \left(n + 1\right)}{9 n + 8}\right)^{- n - 1} \left|{\left(\frac{3 n}{9 n - 1}\right)^{n}}\right|\right)
Let's take the limit
we find
False

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.20.6
The answer [src]
  oo             
____             
\   `            
 \              n
  \   /  3*n   \ 
  /   |--------| 
 /    \-1 + 9*n/ 
/___,            
n = 1            
n=1(3n9n1)n\sum_{n=1}^{\infty} \left(\frac{3 n}{9 n - 1}\right)^{n}
Sum((3*n/(-1 + 9*n))^n, (n, 1, oo))
Numerical answer [src]
0.561769005363273344436983043632
0.561769005363273344436983043632
The graph
Sum of series (3*n/(9*n-1))^n

    Examples of finding the sum of a series