Mister Exam

Other calculators


sqrt^4(n^3)
  • How to use it?

  • Sum of series:
  • (-1)^(n+1)3^(2n)x^(2n)
  • cos((n*pi)/180) cos((n*pi)/180)
  • 0.79*10^-6 0.79*10^-6
  • sqrt^4(n^3) sqrt^4(n^3)
  • Identical expressions

  • sqrt^ four (n^ three)
  • square root of to the power of 4(n cubed )
  • square root of to the power of four (n to the power of three)
  • √^4(n^3)
  • sqrt4(n3)
  • sqrt4n3
  • sqrt⁴(n³)
  • sqrt to the power of 4(n to the power of 3)
  • sqrt^4n^3

Sum of series sqrt^4(n^3)



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \           4
  \      ____ 
  /     /  3  
 /    \/  n   
/___,         
n = 1         
n=1(n3)4\sum_{n=1}^{\infty} \left(\sqrt{n^{3}}\right)^{4}
Sum((sqrt(n^3))^4, (n, 1, oo))
The radius of convergence of the power series
Given number:
(n3)4\left(\sqrt{n^{3}}\right)^{4}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=n6a_{n} = n^{6}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(n6(n+1)6)1 = \lim_{n \to \infty}\left(\frac{n^{6}}{\left(n + 1\right)^{6}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50200000
The answer [src]
oo
\infty
oo
Numerical answer
The series diverges
The graph
Sum of series sqrt^4(n^3)

    Examples of finding the sum of a series