Mister Exam

Other calculators


sqrt(n!)/n

Sum of series sqrt(n!)/n



=

The solution

You have entered [src]
  oo        
____        
\   `       
 \      ____
  \   \/ n! 
  /   ------
 /      n   
/___,       
n = 1       
$$\sum_{n=1}^{\infty} \frac{\sqrt{n!}}{n}$$
Sum(sqrt(factorial(n))/n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\sqrt{n!}}{n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\sqrt{n!}}{n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right) \left|{\sqrt{n!}}\right|}{n \left|{\sqrt{\left(n + 1\right)!}}\right|}\right)$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
The graph
Sum of series sqrt(n!)/n

    Examples of finding the sum of a series