Mister Exam

Other calculators


6/(3n-1)(3n+5)

Sum of series 6/(3n-1)(3n+5)



=

The solution

You have entered [src]
  oo                   
 ___                   
 \  `                  
  \      6             
   )  -------*(3*n + 5)
  /   3*n - 1          
 /__,                  
n = 1                  
$$\sum_{n=1}^{\infty} \frac{6}{3 n - 1} \left(3 n + 5\right)$$
Sum((6/(3*n - 1))*(3*n + 5), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{6}{3 n - 1} \left(3 n + 5\right)$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{6 \left(3 n + 5\right)}{3 n - 1}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(3 n + 2\right) \left(3 n + 5\right) \left|{\frac{1}{3 n - 1}}\right|}{3 n + 8}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer
The series diverges
The graph
Sum of series 6/(3n-1)(3n+5)

    Examples of finding the sum of a series