Mister Exam

Other calculators

Sum of series (sin(x))^2



=

The solution

You have entered [src]
  oo         
 ___         
 \  `        
  \      2   
  /   sin (x)
 /__,        
n = 1        
n=1sin2(x)\sum_{n=1}^{\infty} \sin^{2}{\left(x \right)}
Sum(sin(x)^2, (n, 1, oo))
The radius of convergence of the power series
Given number:
sin2(x)\sin^{2}{\left(x \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=sin2(x)a_{n} = \sin^{2}{\left(x \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
      2   
oo*sin (x)
sin2(x)\infty \sin^{2}{\left(x \right)}
oo*sin(x)^2

    Examples of finding the sum of a series