Mister Exam

Other calculators


sin(3*n)/(n+2)

Sum of series sin(3*n)/(n+2)



=

The solution

You have entered [src]
  68          
 ___          
 \  `         
  \   sin(3*n)
   )  --------
  /    n + 2  
 /__,         
n = 1         
$$\sum_{n=1}^{68} \frac{\sin{\left(3 n \right)}}{n + 2}$$
Sum(sin(3*n)/(n + 2), (n, 1, 68))
The rate of convergence of the power series
The answer [src]
sin(3)   sin(6)   sin(9)   sin(12)   sin(15)   sin(18)   sin(21)   sin(24)   sin(27)   sin(30)   sin(33)   sin(36)   sin(39)   sin(42)   sin(45)   sin(48)   sin(51)   sin(54)   sin(57)   sin(60)   sin(63)   sin(66)   sin(69)   sin(72)   sin(75)   sin(78)   sin(81)   sin(84)   sin(87)   sin(90)   sin(93)   sin(96)   sin(99)   sin(102)   sin(105)   sin(108)   sin(111)   sin(114)   sin(117)   sin(120)   sin(123)   sin(126)   sin(129)   sin(132)   sin(135)   sin(138)   sin(141)   sin(144)   sin(147)   sin(150)   sin(153)   sin(156)   sin(159)   sin(162)   sin(165)   sin(168)   sin(171)   sin(174)   sin(177)   sin(180)   sin(183)   sin(186)   sin(189)   sin(192)   sin(195)   sin(198)   sin(201)   sin(204)
------ + ------ + ------ + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + ------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + -------- + --------
  3        4        5         6         7         8         9         10        11        12        13        14        15        16        17        18        19        20        21        22        23        24        25        26        27        28        29        30        31        32        33        34        35        36         37         38         39         40         41         42         43         44         45         46         47         48         49         50         51         52         53         54         55         56         57         58         59         60         61         62         63         64         65         66         67         68         69         70   
$$\frac{\sin{\left(18 \right)}}{8} + \frac{\sin{\left(24 \right)}}{10} + \frac{\sin{\left(12 \right)}}{6} + \frac{\sin{\left(30 \right)}}{12} + \frac{\sin{\left(36 \right)}}{14} + \frac{\sin{\left(6 \right)}}{4} + \frac{\sin{\left(42 \right)}}{16} + \frac{\sin{\left(48 \right)}}{18} + \frac{\sin{\left(93 \right)}}{33} + \frac{\sin{\left(99 \right)}}{35} + \frac{\sin{\left(54 \right)}}{20} + \frac{\sin{\left(87 \right)}}{31} + \frac{\sin{\left(105 \right)}}{37} + \frac{\sin{\left(111 \right)}}{39} + \frac{\sin{\left(81 \right)}}{29} + \frac{\sin{\left(162 \right)}}{56} + \frac{\sin{\left(168 \right)}}{58} + \frac{\sin{\left(117 \right)}}{41} + \frac{\sin{\left(156 \right)}}{54} + \frac{\sin{\left(174 \right)}}{60} + \frac{\sin{\left(75 \right)}}{27} + \frac{\sin{\left(60 \right)}}{22} + \frac{\sin{\left(150 \right)}}{52} + \frac{\sin{\left(180 \right)}}{62} + \frac{\sin{\left(123 \right)}}{43} + \frac{\sin{\left(144 \right)}}{50} + \frac{\sin{\left(186 \right)}}{64} + \frac{\sin{\left(192 \right)}}{66} + \frac{\sin{\left(138 \right)}}{48} + \frac{\sin{\left(69 \right)}}{25} + \frac{\sin{\left(129 \right)}}{45} + \frac{\sin{\left(198 \right)}}{68} + \frac{\sin{\left(66 \right)}}{24} + \frac{\sin{\left(201 \right)}}{69} + \frac{\sin{\left(132 \right)}}{46} + \frac{\sin{\left(135 \right)}}{47} + \frac{\sin{\left(204 \right)}}{70} + \frac{\sin{\left(195 \right)}}{67} + \frac{\sin{\left(63 \right)}}{23} + \frac{\sin{\left(141 \right)}}{49} + \frac{\sin{\left(189 \right)}}{65} + \frac{\sin{\left(126 \right)}}{44} + \frac{\sin{\left(72 \right)}}{26} + \frac{\sin{\left(183 \right)}}{63} + \frac{\sin{\left(147 \right)}}{51} + \frac{\sin{\left(120 \right)}}{42} + \frac{\sin{\left(177 \right)}}{61} + \frac{\sin{\left(153 \right)}}{53} + \frac{\sin{\left(171 \right)}}{59} + \frac{\sin{\left(159 \right)}}{55} + \frac{\sin{\left(165 \right)}}{57} + \frac{\sin{\left(78 \right)}}{28} + \frac{\sin{\left(114 \right)}}{40} + \frac{\sin{\left(57 \right)}}{21} + \frac{\sin{\left(108 \right)}}{38} + \frac{\sin{\left(84 \right)}}{30} + \frac{\sin{\left(102 \right)}}{36} + \frac{\sin{\left(90 \right)}}{32} + \frac{\sin{\left(96 \right)}}{34} + \frac{\sin{\left(51 \right)}}{19} + \frac{\sin{\left(3 \right)}}{3} + \frac{\sin{\left(45 \right)}}{17} + \frac{\sin{\left(39 \right)}}{15} + \frac{\sin{\left(33 \right)}}{13} + \frac{\sin{\left(9 \right)}}{5} + \frac{\sin{\left(27 \right)}}{11} + \frac{\sin{\left(15 \right)}}{7} + \frac{\sin{\left(21 \right)}}{9}$$
sin(3)/3 + sin(6)/4 + sin(9)/5 + sin(12)/6 + sin(15)/7 + sin(18)/8 + sin(21)/9 + sin(24)/10 + sin(27)/11 + sin(30)/12 + sin(33)/13 + sin(36)/14 + sin(39)/15 + sin(42)/16 + sin(45)/17 + sin(48)/18 + sin(51)/19 + sin(54)/20 + sin(57)/21 + sin(60)/22 + sin(63)/23 + sin(66)/24 + sin(69)/25 + sin(72)/26 + sin(75)/27 + sin(78)/28 + sin(81)/29 + sin(84)/30 + sin(87)/31 + sin(90)/32 + sin(93)/33 + sin(96)/34 + sin(99)/35 + sin(102)/36 + sin(105)/37 + sin(108)/38 + sin(111)/39 + sin(114)/40 + sin(117)/41 + sin(120)/42 + sin(123)/43 + sin(126)/44 + sin(129)/45 + sin(132)/46 + sin(135)/47 + sin(138)/48 + sin(141)/49 + sin(144)/50 + sin(147)/51 + sin(150)/52 + sin(153)/53 + sin(156)/54 + sin(159)/55 + sin(162)/56 + sin(165)/57 + sin(168)/58 + sin(171)/59 + sin(174)/60 + sin(177)/61 + sin(180)/62 + sin(183)/63 + sin(186)/64 + sin(189)/65 + sin(192)/66 + sin(195)/67 + sin(198)/68 + sin(201)/69 + sin(204)/70
Numerical answer [src]
0.0180506734085979370376295845000
0.0180506734085979370376295845000
The graph
Sum of series sin(3*n)/(n+2)

    Examples of finding the sum of a series