Mister Exam

Other calculators


sin(1/n)/sqrt(n)

Sum of series sin(1/n)/sqrt(n)



=

The solution

You have entered [src]
  oo         
_____        
\    `       
 \        /1\
  \    sin|-|
   \      \n/
   /   ------
  /      ___ 
 /     \/ n  
/____,       
n = 1        
$$\sum_{n=1}^{\infty} \frac{\sin{\left(\frac{1}{n} \right)}}{\sqrt{n}}$$
Sum(sin(1/n)/sqrt(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\sin{\left(\frac{1}{n} \right)}}{\sqrt{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\sin{\left(\frac{1}{n} \right)}}{\sqrt{n}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\sqrt{n + 1} \left|{\frac{\sin{\left(\frac{1}{n} \right)}}{\sin{\left(\frac{1}{n + 1} \right)}}}\right|}{\sqrt{n}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
Numerical answer [src]
2.43293290822743140212571503162
2.43293290822743140212571503162
The graph
Sum of series sin(1/n)/sqrt(n)

    Examples of finding the sum of a series