Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • n*2^n n*2^n
  • sinn/n sinn/n
  • 1/(x*(x+1)) 1/(x*(x+1))
  • -18 -18
  • Identical expressions

  • (pi/ two (n))sen(pi(i)/ two (n))
  • ( Pi divide by 2(n))sen( Pi (i) divide by 2(n))
  • ( Pi divide by two (n))sen( Pi (i) divide by two (n))
  • pi/2nsenpii/2n
  • (pi divide by 2(n))sen(pi(i) divide by 2(n))
  • Similar expressions

  • pi/((2*n))sen(pi(i)/2(n))

Sum of series (pi/2(n))sen(pi(i)/2(n))



=

The solution

You have entered [src]
  oo                  
 ___                  
 \  `                 
  \   pi      /pi*i  \
   )  --*n*sin|----*n|
  /   2       \ 2    /
 /__,                 
i = 1                 
$$\sum_{i=1}^{\infty} n \frac{\pi}{2} \sin{\left(n \frac{\pi i}{2} \right)}$$
Sum(((pi/2)*n)*sin(((pi*i)/2)*n), (i, 1, oo))
The answer [src]
  oo                  
____                  
\   `                 
 \            /pi*i*n\
  \   pi*n*sin|------|
   )          \  2   /
  /   ----------------
 /           2        
/___,                 
i = 1                 
$$\sum_{i=1}^{\infty} \frac{\pi n \sin{\left(\frac{\pi i n}{2} \right)}}{2}$$
Sum(pi*n*sin(pi*i*n/2)/2, (i, 1, oo))

    Examples of finding the sum of a series