Mister Exam

Other calculators


1+1/factorial(n)

Sum of series 1+1/factorial(n)



=

The solution

You have entered [src]
  oo          
 ___          
 \  `         
  \   /    1 \
   )  |1 + --|
  /   \    n!/
 /__,         
n = 1         
n=1(1+1n!)\sum_{n=1}^{\infty} \left(1 + \frac{1}{n!}\right)
Sum(1 + 1/factorial(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
1+1n!1 + \frac{1}{n!}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1+1n!a_{n} = 1 + \frac{1}{n!}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn1+1n!1+1(n+1)!1 = \lim_{n \to \infty} \left|{\frac{1 + \frac{1}{n!}}{1 + \frac{1}{\left(n + 1\right)!}}}\right|
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5010
The answer [src]
oo
\infty
oo
The graph
Sum of series 1+1/factorial(n)

    Examples of finding the sum of a series