Mister Exam

Other calculators

Sum of series (1-p)^(n-1)



=

The solution

You have entered [src]
  oo              
 ___              
 \  `             
  \          n - 1
  /   (1 - p)     
 /__,             
n = 1             
$$\sum_{n=1}^{\infty} \left(1 - p\right)^{n - 1}$$
Sum((1 - p)^(n - 1), (n, 1, oo))
The answer [src]
/    1 - p                       
|    -----       for |-1 + p| < 1
|      p                         
|                                
|  oo                            
< ___                            
| \  `                           
|  \          n                  
|  /   (1 - p)      otherwise    
| /__,                           
\n = 1                           
---------------------------------
              1 - p              
$$\frac{\begin{cases} \frac{1 - p}{p} & \text{for}\: \left|{p - 1}\right| < 1 \\\sum_{n=1}^{\infty} \left(1 - p\right)^{n} & \text{otherwise} \end{cases}}{1 - p}$$
Piecewise(((1 - p)/p, |-1 + p| < 1), (Sum((1 - p)^n, (n, 1, oo)), True))/(1 - p)

    Examples of finding the sum of a series