oo ___ \ ` \ n - 1 / (1 - p) /__, n = 1
Sum((1 - p)^(n - 1), (n, 1, oo))
/ 1 - p | ----- for |-1 + p| < 1 | p | | oo < ___ | \ ` | \ n | / (1 - p) otherwise | /__, \n = 1 --------------------------------- 1 - p
Piecewise(((1 - p)/p, |-1 + p| < 1), (Sum((1 - p)^n, (n, 1, oo)), True))/(1 - p)
x^n/n
(x-1)^n
1/2^(n!)
n^2/n!
x^n/n!
k!/(n!*(n+k)!)
csc(n)^2/n^3
1/n^2
1/n^4
1/n^6
1/n
(-1)^n
(-1)^(n + 1)/n
(n + 2)*(-1)^(n - 1)
(3*n - 1)/(-5)^n
(-1)^(n - 1)*n/(6*n - 5)
(-1)^(n + 1)/n*x^n
(3*n - 1)/(-5)^n