Mister Exam

Other calculators


(100!)/(n!*(100-n)!)*((0.0125)^n)*((1-0.0125)^(100-n))
  • How to use it?

  • Sum of series:
  • (1-x^4)^n/(n+2)
  • a^n*cos(a)+b^n*sin(n*b)
  • factorial(6*n)/4^n factorial(6*n)/4^n
  • 3.8 3.8
  • Identical expressions

  • (one hundred !)/(n!*(one hundred -n)!)*((zero . one hundred and twenty-five)^n)*((one - zero . one hundred and twenty-five)^(one hundred -n))
  • (100!) divide by (n! multiply by (100 minus n)!) multiply by ((0.0125) to the power of n) multiply by ((1 minus 0.0125) to the power of (100 minus n))
  • (one hundred !) divide by (n! multiply by (one hundred minus n)!) multiply by ((zero . one hundred and twenty minus five) to the power of n) multiply by ((one minus zero . one hundred and twenty minus five) to the power of (one hundred minus n))
  • (100!)/(n!*(100-n)!)*((0.0125)n)*((1-0.0125)(100-n))
  • 100!/n!*100-n!*0.0125n*1-0.0125100-n
  • (100!)/(n!(100-n)!)((0.0125)^n)((1-0.0125)^(100-n))
  • (100!)/(n!(100-n)!)((0.0125)n)((1-0.0125)(100-n))
  • 100!/n!100-n!0.0125n1-0.0125100-n
  • 100!/n!100-n!0.0125^n1-0.0125^100-n
  • (100!) divide by (n!*(100-n)!)*((0.0125)^n)*((1-0.0125)^(100-n))
  • Similar expressions

  • (100!)/(n!*(100-n)!)*((0.0125)^n)*((1-0.0125)^(100+n))
  • (100!)/(n!*(100+n)!)*((0.0125)^n)*((1-0.0125)^(100-n))
  • (100!)/(n!*(100-n)!)*((0.0125)^n)*((1+0.0125)^(100-n))

Sum of series (100!)/(n!*(100-n)!)*((0.0125)^n)*((1-0.0125)^(100-n))



=

The solution

You have entered [src]
 100                                     
 ___                                     
 \  `                                    
  \        100!           n       100 - n
   )  -------------*0.0125 *0.9875       
  /   n!*(100 - n)!                      
 /__,                                    
n = 1                                    
$$\sum_{n=1}^{100} 0.9875^{100 - n} 0.0125^{n} \frac{100!}{n! \left(100 - n\right)!}$$
Sum(((factorial(100)/((factorial(n)*factorial(100 - n))))*0.0125^n)*0.9875^(100 - n), (n, 1, 100))
The rate of convergence of the power series
The answer [src]
0.715743483304891
$$0.715743483304891$$
0.715743483304891
Numerical answer [src]
0.715743483304890897327499223544
0.715743483304890897327499223544
The graph
Sum of series (100!)/(n!*(100-n)!)*((0.0125)^n)*((1-0.0125)^(100-n))

    Examples of finding the sum of a series