Given number:
$$\frac{\sin{\left(x \right)}}{x}$$
It is a series of species
$$a_{x} \left(c x - x_{0}\right)^{d x}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}$$
In this case
$$a_{x} = \frac{\sin{\left(x \right)}}{x}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{x \to \infty}\left(\frac{\left(x + 1\right) \left|{\frac{\sin{\left(x \right)}}{\sin{\left(x + 1 \right)}}}\right|}{x}\right)$$
Let's take the limitwe find
True
False