Mister Exam

Other calculators

Sum of series 1/(x+2)^5



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \        1    
  \    --------
  /           5
 /     (x + 2) 
/___,          
n = -1         
n=11(x+2)5\sum_{n=-1}^{\infty} \frac{1}{\left(x + 2\right)^{5}}
Sum(1/((x + 2)^5), (n, -1, oo))
The radius of convergence of the power series
Given number:
1(x+2)5\frac{1}{\left(x + 2\right)^{5}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1(x+2)5a_{n} = \frac{1}{\left(x + 2\right)^{5}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn11 = \lim_{n \to \infty} 1
Let's take the limit
we find
True

False
The answer [src]
   oo   
--------
       5
(2 + x) 
(x+2)5\frac{\infty}{\left(x + 2\right)^{5}}
oo/(2 + x)^5

    Examples of finding the sum of a series