/
| _ / n 3 n | \
| |_ |1, 1, 1 - -, - - - | |
| | | 2 2 2 | 1|
| 4 3 | | |
| \ 3/2, 2, 2 | /
| ----------------------------- for 1 + re(n) > 0
| Gamma(-1 + n)
|
< oo
|____
|\ `
| \ 1
| \ -------------------------
| / 2 otherwise
| / p *(-1 + 2*p)!*(n - 2*p)!
|/___,
|p = 1
\
---------------------------------------------------
4
$$\frac{\begin{cases} \frac{{{}_{4}F_{3}\left(\begin{matrix} 1, 1, 1 - \frac{n}{2}, \frac{3}{2} - \frac{n}{2} \\ \frac{3}{2}, 2, 2 \end{matrix}\middle| {1} \right)}}{\Gamma\left(n - 1\right)} & \text{for}\: \operatorname{re}{\left(n\right)} + 1 > 0 \\\sum_{p=1}^{\infty} \frac{1}{p^{2} \left(n - 2 p\right)! \left(2 p - 1\right)!} & \text{otherwise} \end{cases}}{4}$$
Piecewise((hyper((1, 1, 1 - n/2, 3/2 - n/2), (3/2, 2, 2), 1)/gamma(-1 + n), 1 + re(n) > 0), (Sum(1/(p^2*factorial(-1 + 2*p)*factorial(n - 2*p)), (p, 1, oo)), True))/4