Mister Exam

Other calculators

Sum of series 1/((2p)^2(2p-1)!(n-2p)!)



=

The solution

You have entered [src]
  oo                              
____                              
\   `                             
 \                 1              
  \   ----------------------------
  /        2                      
 /    (2*p) *(2*p - 1)!*(n - 2*p)!
/___,                             
p = 1                             
$$\sum_{p=1}^{\infty} \frac{1}{\left(2 p\right)^{2} \left(2 p - 1\right)! \left(n - 2 p\right)!}$$
Sum(1/(((2*p)^2*factorial(2*p - 1))*factorial(n - 2*p)), (p, 1, oo))
The answer [src]
/                                                  
|   _  /          n  3   n |  \                    
|  |_  |1, 1, 1 - -, - - - |  |                    
|  |   |          2  2   2 | 1|                    
| 4  3 |                   |  |                    
|      \    3/2, 2, 2      |  /                    
| -----------------------------   for 1 + re(n) > 0
|         Gamma(-1 + n)                            
|                                                  
<  oo                                              
|____                                              
|\   `                                             
| \                1                               
|  \   -------------------------                   
|  /    2                             otherwise    
| /    p *(-1 + 2*p)!*(n - 2*p)!                   
|/___,                                             
|p = 1                                             
\                                                  
---------------------------------------------------
                         4                         
$$\frac{\begin{cases} \frac{{{}_{4}F_{3}\left(\begin{matrix} 1, 1, 1 - \frac{n}{2}, \frac{3}{2} - \frac{n}{2} \\ \frac{3}{2}, 2, 2 \end{matrix}\middle| {1} \right)}}{\Gamma\left(n - 1\right)} & \text{for}\: \operatorname{re}{\left(n\right)} + 1 > 0 \\\sum_{p=1}^{\infty} \frac{1}{p^{2} \left(n - 2 p\right)! \left(2 p - 1\right)!} & \text{otherwise} \end{cases}}{4}$$
Piecewise((hyper((1, 1, 1 - n/2, 3/2 - n/2), (3/2, 2, 2), 1)/gamma(-1 + n), 1 + re(n) > 0), (Sum(1/(p^2*factorial(-1 + 2*p)*factorial(n - 2*p)), (p, 1, oo)), True))/4

    Examples of finding the sum of a series