Mister Exam

Other calculators


1/(2*n+1)!

Sum of series 1/(2*n+1)!



=

The solution

You have entered [src]
  oo            
 ___            
 \  `           
  \       1     
   )  ----------
  /   (2*n + 1)!
 /__,           
n = 1           
n=11(2n+1)!\sum_{n=1}^{\infty} \frac{1}{\left(2 n + 1\right)!}
Sum(1/factorial(2*n + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
1(2n+1)!\frac{1}{\left(2 n + 1\right)!}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1(2n+1)!a_{n} = \frac{1}{\left(2 n + 1\right)!}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(2n+3)!(2n+1)!1 = \lim_{n \to \infty} \left|{\frac{\left(2 n + 3\right)!}{\left(2 n + 1\right)!}}\right|
Let's take the limit
we find
False

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.1600.180
The answer [src]
-1 + sinh(1)
1+sinh(1)-1 + \sinh{\left(1 \right)}
-1 + sinh(1)
Numerical answer [src]
0.175201193643801456882381850596
0.175201193643801456882381850596
The graph
Sum of series 1/(2*n+1)!

    Examples of finding the sum of a series