Mister Exam

Other calculators

Sum of series 1/(2k-1)^2



=

The solution

You have entered [src]
  oo            
____            
\   `           
 \        1     
  \   ----------
  /            2
 /    (2*k - 1) 
/___,           
n = 1           
$$\sum_{n=1}^{\infty} \frac{1}{\left(2 k - 1\right)^{2}}$$
Sum(1/((2*k - 1)^2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\left(2 k - 1\right)^{2}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\left(2 k - 1\right)^{2}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} 1$$
Let's take the limit
we find
True

False
The answer [src]
     oo    
-----------
          2
(-1 + 2*k) 
$$\frac{\infty}{\left(2 k - 1\right)^{2}}$$
oo/(-1 + 2*k)^2

    Examples of finding the sum of a series