Mister Exam

Other calculators


1/((3*n-1)*(3n+2))

Sum of series 1/((3*n-1)*(3n+2))



=

The solution

You have entered [src]
  oo                     
 ___                     
 \  `                    
  \            1         
   )  -------------------
  /   (3*n - 1)*(3*n + 2)
 /__,                    
n = 1                    
$$\sum_{n=1}^{\infty} \frac{1}{\left(3 n - 1\right) \left(3 n + 2\right)}$$
Sum(1/((3*n - 1)*(3*n + 2)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\left(3 n - 1\right) \left(3 n + 2\right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\left(3 n - 1\right) \left(3 n + 2\right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\left(3 n + 5\right) \left|{\frac{1}{3 n - 1}}\right|\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
  Gamma(8/3) 
-------------
10*Gamma(5/3)
$$\frac{\Gamma\left(\frac{8}{3}\right)}{10 \Gamma\left(\frac{5}{3}\right)}$$
gamma(8/3)/(10*gamma(5/3))
Numerical answer [src]
0.166666666666666666666666666667
0.166666666666666666666666666667
The graph
Sum of series 1/((3*n-1)*(3n+2))

    Examples of finding the sum of a series