Mister Exam

Other calculators


1/sqrt(n+1)

Sum of series 1/sqrt(n+1)



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \        1    
  \   ---------
  /     _______
 /    \/ n + 1 
/___,          
n = 1          
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n + 1}}$$
Sum(1/(sqrt(n + 1)), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\sqrt{n + 1}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\sqrt{n + 1}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\sqrt{n + 2}}{\sqrt{n + 1}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
  oo           
____           
\   `          
 \        1    
  \   ---------
  /     _______
 /    \/ 1 + n 
/___,          
n = 1          
$$\sum_{n=1}^{\infty} \frac{1}{\sqrt{n + 1}}$$
Sum(1/sqrt(1 + n), (n, 1, oo))
Numerical answer
The series diverges
The graph
Sum of series 1/sqrt(n+1)

    Examples of finding the sum of a series