Mister Exam

Other calculators

Sum of series 1/nln(n)(ln(ln(n)))^p



=

The solution

You have entered [src]
  oo                     
 ___                     
 \  `                    
  \   log(n)    p        
   )  ------*log (log(n))
  /     n                
 /__,                    
n = 3                    
$$\sum_{n=3}^{\infty} \frac{\log{\left(n \right)}}{n} \log{\left(\log{\left(n \right)} \right)}^{p}$$
Sum((log(n)/n)*log(log(n))^p, (n, 3, oo))
The answer [src]
  oo                     
____                     
\   `                    
 \       p               
  \   log (log(n))*log(n)
  /   -------------------
 /             n         
/___,                    
n = 3                    
$$\sum_{n=3}^{\infty} \frac{\log{\left(n \right)} \log{\left(\log{\left(n \right)} \right)}^{p}}{n}$$
Sum(log(log(n))^p*log(n)/n, (n, 3, oo))

    Examples of finding the sum of a series