Mister Exam

Other calculators


1/((n^(n-1))+1)

Sum of series 1/((n^(n-1))+1)



=

The solution

You have entered [src]
  oo            
____            
\   `           
 \        1     
  \   ----------
  /    n - 1    
 /    n      + 1
/___,           
n = 1           
$$\sum_{n=1}^{\infty} \frac{1}{n^{n - 1} + 1}$$
Sum(1/(n^(n - 1) + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{n^{n - 1} + 1}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{n^{n - 1} + 1}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{n} + 1}{n^{n - 1} + 1}\right)$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
Numerical answer [src]
0.950452977989358868050002450241
0.950452977989358868050002450241
The graph
Sum of series 1/((n^(n-1))+1)

    Examples of finding the sum of a series