Mister Exam

Other calculators


1/n^4

Sum of series 1/n^4



=

The solution

You have entered [src]
  oo    
____    
\   `   
 \    1 
  \   --
  /    4
 /    n 
/___,   
n = 1   
n=11n4\sum_{n=1}^{\infty} \frac{1}{n^{4}}
Sum(1/(n^4), (n, 1, oo))
The radius of convergence of the power series
Given number:
1n4\frac{1}{n^{4}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1n4a_{n} = \frac{1}{n^{4}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((n+1)4n4)1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{4}}{n^{4}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50.901.10
The answer [src]
  4
pi 
---
 90
π490\frac{\pi^{4}}{90}
pi^4/90
Numerical answer [src]
1.08232323371113819151600369654
1.08232323371113819151600369654
The graph
Sum of series 1/n^4

    Examples of finding the sum of a series