Mister Exam

Other calculators


1/(n*(log(n))^5)
  • How to use it?

  • Sum of series:
  • 24/(9n^2-12n-5) 24/(9n^2-12n-5)
  • (3^(n+2)-2*6^n)/18^n (3^(n+2)-2*6^n)/18^n
  • (-1)^nx^n/n!
  • ((2*n+4)/(5*n+7))^n*x^n
  • Identical expressions

  • one /(n*(log(n))^ five)
  • 1 divide by (n multiply by ( logarithm of (n)) to the power of 5)
  • one divide by (n multiply by ( logarithm of (n)) to the power of five)
  • 1/(n*(log(n))5)
  • 1/n*logn5
  • 1/(n*(log(n))⁵)
  • 1/(n(log(n))^5)
  • 1/(n(log(n))5)
  • 1/nlogn5
  • 1/nlogn^5
  • 1 divide by (n*(log(n))^5)

Sum of series 1/(n*(log(n))^5)



=

The solution

You have entered [src]
  oo           
____           
\   `          
 \        1    
  \   ---------
  /        5   
 /    n*log (n)
/___,          
n = 1          
n=11nlog(n)5\sum_{n=1}^{\infty} \frac{1}{n \log{\left(n \right)}^{5}}
Sum(1/(n*log(n)^5), (n, 1, oo))
The radius of convergence of the power series
Given number:
1nlog(n)5\frac{1}{n \log{\left(n \right)}^{5}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=1nlog(n)5a_{n} = \frac{1}{n \log{\left(n \right)}^{5}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn((n+1)log(n+1)51log(n)5n)1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right) \log{\left(n + 1 \right)}^{5} \left|{\frac{1}{\log{\left(n \right)}^{5}}}\right|}{n}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
-0.010-0.008-0.006-0.004-0.0020.0100.0000.0020.0040.0060.0080.00
The graph
Sum of series 1/(n*(log(n))^5)

    Examples of finding the sum of a series