Mister Exam

Other calculators

Sum of series 1/(a+n)(a+n+1)



=

The solution

You have entered [src]
  oo           
 ___           
 \  `          
  \   a + n + 1
   )  ---------
  /     a + n  
 /__,          
n = 1          
$$\sum_{n=1}^{\infty} \frac{\left(a + n\right) + 1}{a + n}$$
Sum((a + n + 1)/(a + n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(a + n\right) + 1}{a + n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{a + n + 1}{a + n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{\left(a + n + 1\right)^{2}}{\left(a + n\right) \left(a + n + 2\right)}}\right|$$
Let's take the limit
we find
True

False

    Examples of finding the sum of a series