Given number:
$$\frac{1}{4 k^{2} - 1}$$
It is a series of species
$$a_{k} \left(c x - x_{0}\right)^{d k}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{k \to \infty} \left|{\frac{a_{k}}{a_{k + 1}}}\right|}{c}$$
In this case
$$a_{k} = \frac{1}{4 k^{2} - 1}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{k \to \infty}\left(\left(4 \left(k + 1\right)^{2} - 1\right) \left|{\frac{1}{4 k^{2} - 1}}\right|\right)$$
Let's take the limitwe find
True
False