Mister Exam

Other calculators


1/((3n+1)(3n+2))

Sum of series 1/((3n+1)(3n+2))



=

The solution

You have entered [src]
  oo                     
 ___                     
 \  `                    
  \            1         
   )  -------------------
  /   (3*n + 1)*(3*n + 2)
 /__,                    
n = 0                    
$$\sum_{n=0}^{\infty} \frac{1}{\left(3 n + 1\right) \left(3 n + 2\right)}$$
Sum(1/((3*n + 1)*(3*n + 2)), (n, 0, oo))
The radius of convergence of the power series
Given number:
$$\frac{1}{\left(3 n + 1\right) \left(3 n + 2\right)}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{1}{\left(3 n + 1\right) \left(3 n + 2\right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(3 n + 4\right) \left(3 n + 5\right)}{\left(3 n + 1\right) \left(3 n + 2\right)}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
   -2*pi*I    /     2*pi*I\    2*pi*I    /     4*pi*I\    -2*pi*I    /     4*pi*I\    2*pi*I    /     2*pi*I\
   -------    |     ------|    ------    |     ------|    -------    |     ------|    ------    |     ------|
      3       |       3   |      3       |       3   |       3       |       3   |      3       |       3   |
  e       *log\1 - e      /   e      *log\1 - e      /   e       *log\1 - e      /   e      *log\1 - e      /
- ------------------------- - ------------------------ + ------------------------- + ------------------------
              3                          3                           3                          3            
$$\frac{e^{- \frac{2 i \pi}{3}} \log{\left(1 - e^{\frac{4 i \pi}{3}} \right)}}{3} - \frac{e^{\frac{2 i \pi}{3}} \log{\left(1 - e^{\frac{4 i \pi}{3}} \right)}}{3} - \frac{e^{- \frac{2 i \pi}{3}} \log{\left(1 - e^{\frac{2 i \pi}{3}} \right)}}{3} + \frac{e^{\frac{2 i \pi}{3}} \log{\left(1 - e^{\frac{2 i \pi}{3}} \right)}}{3}$$
-exp(-2*pi*i/3)*log(1 - exp_polar(2*pi*i/3))/3 - exp(2*pi*i/3)*log(1 - exp_polar(4*pi*i/3))/3 + exp(-2*pi*i/3)*log(1 - exp_polar(4*pi*i/3))/3 + exp(2*pi*i/3)*log(1 - exp_polar(2*pi*i/3))/3
Numerical answer [src]
0.604599788078072616864692752547
0.604599788078072616864692752547
The graph
Sum of series 1/((3n+1)(3n+2))

    Examples of finding the sum of a series