Mister Exam

Other calculators


1/(2n-1)2n

Sum of series 1/(2n-1)2n



=

The solution

You have entered [src]
  oo           
 ___           
 \  `          
  \      2     
   )  -------*n
  /   2*n - 1  
 /__,          
n = 1          
$$\sum_{n=1}^{\infty} n \frac{2}{2 n - 1}$$
Sum((2/(2*n - 1))*n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$n \frac{2}{2 n - 1}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{2 n}{2 n - 1}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{n \left(2 n + 1\right) \left|{\frac{1}{2 n - 1}}\right|}{n + 1}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer
The series diverges
The graph
Sum of series 1/(2n-1)2n

    Examples of finding the sum of a series