Mister Exam

Other calculators


nln(n)/e^n

Sum of series nln(n)/e^n



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \    n*log(n)
  \   --------
  /       n   
 /       E    
/___,         
n = 1         
$$\sum_{n=1}^{\infty} \frac{n \log{\left(n \right)}}{e^{n}}$$
Sum((n*log(n))/E^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{n \log{\left(n \right)}}{e^{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = n \log{\left(n \right)}$$
and
$$x_{0} = - e$$
,
$$d = -1$$
,
$$c = 0$$
then
$$\frac{1}{R} = \tilde{\infty} \left(- e + \lim_{n \to \infty}\left(\frac{n \left|{\log{\left(n \right)}}\right|}{\left(n + 1\right) \log{\left(n + 1 \right)}}\right)\right)$$
Let's take the limit
we find
False

$$R = 0$$
The rate of convergence of the power series
The answer [src]
  oo              
 ___              
 \  `             
  \      -n       
  /   n*e  *log(n)
 /__,             
n = 1             
$$\sum_{n=1}^{\infty} n e^{- n} \log{\left(n \right)}$$
Sum(n*exp(-n)*log(n), (n, 1, oo))
Numerical answer [src]
0.556375615722430028502747844401
0.556375615722430028502747844401
The graph
Sum of series nln(n)/e^n

    Examples of finding the sum of a series