Mister Exam

Other calculators


n^(1/n)

Sum of series n^(1/n)



=

The solution

You have entered [src]
  oo       
 ___       
 \  `      
  \   n ___
  /   \/ n 
 /__,      
n = 1      
n=1n1n\sum_{n=1}^{\infty} n^{\frac{1}{n}}
Sum(n^(1/n), (n, 1, oo))
The radius of convergence of the power series
Given number:
n1nn^{\frac{1}{n}}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=n1na_{n} = n^{\frac{1}{n}}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(n1n(n+1)1n+1)1 = \lim_{n \to \infty}\left(n^{\frac{1}{n}} \left(n + 1\right)^{- \frac{1}{n + 1}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.5010
The graph
Sum of series n^(1/n)

    Examples of finding the sum of a series