Mister Exam

Other calculators


((-1)^(x(x-1)/2))/(x!)

Sum of series ((-1)^(x(x-1)/2))/(x!)



=

The solution

You have entered [src]
  oo                
_____               
\    `              
 \         x*(x - 1)
  \        ---------
   \           2    
   /   (-1)         
  /    -------------
 /           x!     
/____,              
x = 0               
$$\sum_{x=0}^{\infty} \frac{\left(-1\right)^{\frac{x \left(x - 1\right)}{2}}}{x!}$$
Sum((-1)^((x*(x - 1))/2)/factorial(x), (x, 0, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(-1\right)^{\frac{x \left(x - 1\right)}{2}}}{x!}$$
It is a series of species
$$a_{x} \left(c x - x_{0}\right)^{d x}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}$$
In this case
$$a_{x} = \frac{\left(-1\right)^{\frac{x \left(x - 1\right)}{2}}}{x!}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{x \to \infty} \left|{\frac{\left(x + 1\right)!}{x!}}\right|$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
The answer [src]
  oo                 
_____                
\    `               
 \         x*(-1 + x)
  \        ----------
   \           2     
   /   (-1)          
  /    --------------
 /           x!      
/____,               
x = 0                
$$\sum_{x=0}^{\infty} \frac{\left(-1\right)^{\frac{x \left(x - 1\right)}{2}}}{x!}$$
Sum((-1)^(x*(-1 + x)/2)/factorial(x), (x, 0, oo))
Numerical answer [src]
1.38177329067603622405343892907
1.38177329067603622405343892907
The graph
Sum of series ((-1)^(x(x-1)/2))/(x!)

    Examples of finding the sum of a series