Mister Exam

Other calculators


-1^n((n+1)^n+1)/(n+1)!

Sum of series -1^n((n+1)^n+1)/(n+1)!



=

The solution

You have entered [src]
  oo                    
____                    
\   `                   
 \      n /       n    \
  \   -1 *\(n + 1)  + 1/
  /   ------------------
 /         (n + 1)!     
/___,                   
n = 1                   
$$\sum_{n=1}^{\infty} \frac{- 1^{n} \left(\left(n + 1\right)^{n} + 1\right)}{\left(n + 1\right)!}$$
Sum(((-1^n)*((n + 1)^n + 1))/factorial(n + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{- 1^{n} \left(\left(n + 1\right)^{n} + 1\right)}{\left(n + 1\right)!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{- \left(n + 1\right)^{n} - 1}{\left(n + 1\right)!}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(\left(n + 1\right)^{n} + 1\right) \left|{\frac{\left(n + 2\right)!}{\left(n + 1\right)!}}\right|}{\left(n + 2\right)^{n + 1} + 1}\right)$$
Let's take the limit
we find
False

False

False
The rate of convergence of the power series
The answer [src]
  oo               
____               
\   `              
 \                n
  \   -1 - (1 + n) 
  /   -------------
 /       (1 + n)!  
/___,              
n = 1              
$$\sum_{n=1}^{\infty} \frac{- \left(n + 1\right)^{n} - 1}{\left(n + 1\right)!}$$
Sum((-1 - (1 + n)^n)/factorial(1 + n), (n, 1, oo))
The graph
Sum of series -1^n((n+1)^n+1)/(n+1)!

    Examples of finding the sum of a series