Mister Exam

Other calculators


(-1)^n*pi^(2n)/((2n)!)
  • How to use it?

  • Sum of series:
  • sin(nx)*(5-(3*n))
  • e^(4n) e^(4n)
  • (-1)^n*pi^(2n)/((2n)!) (-1)^n*pi^(2n)/((2n)!)
  • cosnx/n^p
  • Identical expressions

  • (- one)^n*pi^(2n)/((2n)!)
  • ( minus 1) to the power of n multiply by Pi to the power of (2n) divide by ((2n)!)
  • ( minus one) to the power of n multiply by Pi to the power of (2n) divide by ((2n)!)
  • (-1)n*pi(2n)/((2n)!)
  • -1n*pi2n/2n!
  • (-1)^npi^(2n)/((2n)!)
  • (-1)npi(2n)/((2n)!)
  • -1npi2n/2n!
  • -1^npi^2n/2n!
  • (-1)^n*pi^(2n) divide by ((2n)!)
  • Similar expressions

  • (1)^n*pi^(2n)/((2n)!)

Sum of series (-1)^n*pi^(2n)/((2n)!)



=

The solution

You have entered [src]
  oo             
____             
\   `            
 \        n   2*n
  \   (-1) *pi   
  /   -----------
 /       (2*n)!  
/___,            
n = 1            
n=1(1)nπ2n(2n)!\sum_{n=1}^{\infty} \frac{\left(-1\right)^{n} \pi^{2 n}}{\left(2 n\right)!}
Sum(((-1)^n*pi^(2*n))/factorial(2*n), (n, 1, oo))
The radius of convergence of the power series
Given number:
(1)nπ2n(2n)!\frac{\left(-1\right)^{n} \pi^{2 n}}{\left(2 n\right)!}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=(1)n(2n)!a_{n} = \frac{\left(-1\right)^{n}}{\left(2 n\right)!}
and
x0=πx_{0} = - \pi
,
d=2d = 2
,
c=0c = 0
then
R2=~(π+limn(2n+2)!(2n)!)R^{2} = \tilde{\infty} \left(- \pi + \lim_{n \to \infty} \left|{\frac{\left(2 n + 2\right)!}{\left(2 n\right)!}}\right|\right)
Let's take the limit
we find
R2=R^{2} = \infty
R=R = \infty
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50-10
The answer [src]
-2
2-2
-2
Numerical answer [src]
-2.00000000000000000000000000000
-2.00000000000000000000000000000
The graph
Sum of series (-1)^n*pi^(2n)/((2n)!)

    Examples of finding the sum of a series