Mister Exam

Other calculators


log(n/(n+1))

Sum of series log(n/(n+1))



=

The solution

You have entered [src]
  oo            
 ___            
 \  `           
  \      /  n  \
   )  log|-----|
  /      \n + 1/
 /__,           
n = 1           
n=1log(nn+1)\sum_{n=1}^{\infty} \log{\left(\frac{n}{n + 1} \right)}
Sum(log(n/(n + 1)), (n, 1, oo))
The radius of convergence of the power series
Given number:
log(nn+1)\log{\left(\frac{n}{n + 1} \right)}
It is a series of species
an(cxx0)dna_{n} \left(c x - x_{0}\right)^{d n}
- power series.
The radius of convergence of a power series can be calculated by the formula:
Rd=x0+limnanan+1cR^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}
In this case
an=log(nn+1)a_{n} = \log{\left(\frac{n}{n + 1} \right)}
and
x0=0x_{0} = 0
,
d=0d = 0
,
c=1c = 1
then
1=limn(log(nn+1)log(n+1n+2))1 = \lim_{n \to \infty}\left(\frac{\log{\left(\frac{n}{n + 1} \right)}}{\log{\left(\frac{n + 1}{n + 2} \right)}}\right)
Let's take the limit
we find
True

False
The rate of convergence of the power series
1.07.01.52.02.53.03.54.04.55.05.56.06.50-4
Numerical answer
The series diverges
The graph
Sum of series log(n/(n+1))

    Examples of finding the sum of a series