Mister Exam

Outras calculadoras


lnx

Soma da série lnx



=

A solução

You have entered [src]
  oo        
 __         
 \ `        
  )   log(x)
 /_,        
x = 1       
$$\sum_{x=1}^{\infty} \log{\left(x \right)}$$
Sum(log(x), (x, 1, oo))
The radius of convergence of the power series
Given number:
$$\log{\left(x \right)}$$
It is a series of species
$$a_{x} \left(c x - x_{0}\right)^{d x}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{x \to \infty} \left|{\frac{a_{x}}{a_{x + 1}}}\right|}{c}$$
In this case
$$a_{x} = \log{\left(x \right)}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{x \to \infty}\left(\frac{\left|{\log{\left(x \right)}}\right|}{\log{\left(x + 1 \right)}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
Numerical answer
The series diverges
Gráfico
Soma da série lnx

    Exemplos de cálculo da soma de séries