Mister Exam

Other calculators


lnn/(n^2+3n)
  • How to use it?

  • Sum of series:
  • (n+1)/5^n (n+1)/5^n
  • n^2*sin(5/(3^n)) n^2*sin(5/(3^n))
  • n*2^n n*2^n
  • n^(1/n) n^(1/n)
  • Identical expressions

  • lnn/(n^ two +3n)
  • lnn divide by (n squared plus 3n)
  • lnn divide by (n to the power of two plus 3n)
  • lnn/(n2+3n)
  • lnn/n2+3n
  • lnn/(n²+3n)
  • lnn/(n to the power of 2+3n)
  • lnn/n^2+3n
  • lnn divide by (n^2+3n)
  • Similar expressions

  • lnn/(n^2-3n)

Sum of series lnn/(n^2+3n)



=

The solution

The radius of convergence of the power series
Given number:
$$\frac{\log{\left(n \right)}}{n^{2} + 3 n}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\log{\left(n \right)}}{n^{2} + 3 n}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(3 n + \left(n + 1\right)^{2} + 3\right) \left|{\log{\left(n \right)}}\right|}{\left(n^{2} + 3 n\right) \log{\left(n + 1 \right)}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
Numerical answer [src]
0.628832407266384023700636893057
0.628832407266384023700636893057
The graph
Sum of series lnn/(n^2+3n)

    Examples of finding the sum of a series