Mister Exam

Other calculators


ln(1+(1/n))-1/(n+1)

Sum of series ln(1+(1/n))-1/(n+1)



=

The solution

You have entered [src]
  oo                      
 ___                      
 \  `                     
  \   /   /    1\     1  \
   )  |log|1 + -| - -----|
  /   \   \    n/   n + 1/
 /__,                     
n = 1                     
$$\sum_{n=1}^{\infty} \left(\log{\left(1 + \frac{1}{n} \right)} - \frac{1}{n + 1}\right)$$
Sum(log(1 + 1/n) - 1/(n + 1), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\log{\left(1 + \frac{1}{n} \right)} - \frac{1}{n + 1}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \log{\left(1 + \frac{1}{n} \right)} - \frac{1}{n + 1}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{\log{\left(1 + \frac{1}{n} \right)} - \frac{1}{n + 1}}{\log{\left(1 + \frac{1}{n + 1} \right)} - \frac{1}{n + 2}}}\right|$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
Numerical answer [src]
0.422784335098467139393487909918
0.422784335098467139393487909918
The graph
Sum of series ln(1+(1/n))-1/(n+1)

    Examples of finding the sum of a series