Mister Exam

Other calculators


lim(2n^2+3)^3/3n^4-3
  • How to use it?

  • Sum of series:
  • ((-1)^n)*((x^n)/(2n*n!))
  • sin²n/√n³+5 sin²n/√n³+5
  • factorial(n+1)/8^(n+1) factorial(n+1)/8^(n+1)
  • x+5 x+5
  • Identical expressions

  • lim(two n^2+ three)^ three / three n^ four -3
  • lim(2n squared plus 3) cubed divide by 3n to the power of 4 minus 3
  • lim(two n squared plus three) to the power of three divide by three n to the power of four minus 3
  • lim(2n2+3)3/3n4-3
  • lim2n2+33/3n4-3
  • lim(2n²+3)³/3n⁴-3
  • lim(2n to the power of 2+3) to the power of 3/3n to the power of 4-3
  • lim2n^2+3^3/3n^4-3
  • lim(2n^2+3)^3 divide by 3n^4-3
  • Similar expressions

  • lim(2n^2-3)^3/3n^4-3
  • lim(2n^2+3)^3/3n^4+3

Sum of series lim(2n^2+3)^3/3n^4-3



=

The solution

You have entered [src]
  oo                      
____                      
\   `                     
 \    /          3       \
  \   |/   2    \        |
   )  |\2*n  + 3/   4    |
  /   |-----------*n  - 3|
 /    \     3            /
/___,                     
n = 1                     
$$\sum_{n=1}^{\infty} \left(n^{4} \frac{\left(2 n^{2} + 3\right)^{3}}{3} - 3\right)$$
Sum(((2*n^2 + 3)^3/3)*n^4 - 3, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$n^{4} \frac{\left(2 n^{2} + 3\right)^{3}}{3} - 3$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{n^{4} \left(2 n^{2} + 3\right)^{3}}{3} - 3$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left|{\frac{n^{4} \left(2 n^{2} + 3\right)^{3}}{3} - 3}\right|}{\frac{\left(n + 1\right)^{4} \left(2 \left(n + 1\right)^{2} + 3\right)^{3}}{3} - 3}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
  oo                       
____                       
\   `                      
 \    /                  3\
  \   |      4 /       2\ |
   )  |     n *\3 + 2*n / |
  /   |-3 + --------------|
 /    \           3       /
/___,                      
n = 1                      
$$\sum_{n=1}^{\infty} \left(\frac{n^{4} \left(2 n^{2} + 3\right)^{3}}{3} - 3\right)$$
Sum(-3 + n^4*(3 + 2*n^2)^3/3, (n, 1, oo))
Numerical answer
The series diverges
The graph
Sum of series lim(2n^2+3)^3/3n^4-3

    Examples of finding the sum of a series