Mister Exam

Other calculators


(i+1)*(2^(i-1))

Sum of series (i+1)*(2^(i-1))



=

The solution

You have entered [src]
  oo                
 ___                
 \  `               
  \            i - 1
  /   (i + 1)*2     
 /__,               
i = 1               
$$\sum_{i=1}^{\infty} 2^{i - 1} \left(i + 1\right)$$
Sum((i + 1)*2^(i - 1), (i, 1, oo))
The radius of convergence of the power series
Given number:
$$2^{i - 1} \left(i + 1\right)$$
It is a series of species
$$a_{i} \left(c x - x_{0}\right)^{d i}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{i \to \infty} \left|{\frac{a_{i}}{a_{i + 1}}}\right|}{c}$$
In this case
$$a_{i} = 2^{i - 1} \left(i + 1\right)$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{i \to \infty}\left(\frac{2^{- i} 2^{i - 1} \left(i + 1\right)}{i + 2}\right)$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
The answer [src]
oo
$$\infty$$
oo
Numerical answer
The series diverges
The graph
Sum of series (i+1)*(2^(i-1))

    Examples of finding the sum of a series