Mister Exam

Other calculators


5/pi^n

Sum of series 5/pi^n



=

The solution

You have entered [src]
  oo     
____     
\   `    
 \     5 
  \   ---
  /     n
 /    pi 
/___,    
n = 1    
$$\sum_{n=1}^{\infty} \frac{5}{\pi^{n}}$$
Sum(5/pi^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{5}{\pi^{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = 5$$
and
$$x_{0} = - \pi$$
,
$$d = -1$$
,
$$c = 0$$
then
$$\frac{1}{R} = \tilde{\infty} \left(- \pi + \lim_{n \to \infty} 1\right)$$
Let's take the limit
we find
False

$$R = 0$$
The rate of convergence of the power series
The answer [src]
     5     
-----------
   /    1 \
pi*|1 - --|
   \    pi/
$$\frac{5}{\pi \left(1 - \frac{1}{\pi}\right)}$$
5/(pi*(1 - 1/pi))
Numerical answer [src]
2.33471103462129929991697406617
2.33471103462129929991697406617
The graph
Sum of series 5/pi^n

    Examples of finding the sum of a series