Mister Exam

Other calculators

Sum of series factorial(x-n)



=

The solution

You have entered [src]
  oo          
 __           
 \ `          
  )   (x - n)!
 /_,          
n = 1         
$$\sum_{n=1}^{\infty} \left(- n + x\right)!$$
Sum(factorial(x - n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\left(- n + x\right)!$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \left(- n + x\right)!$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{\left(- (n - x)\right)!}{\left(- (n - x + 1)\right)!}}\right|$$
Let's take the limit
we find
True

False
The answer [src]
    -1  pi*I*x                    /   pi*I   pi*I\
-x*e  *e      *Gamma(x)*lowergamma\x*e    , e    /
$$- \frac{x e^{i \pi x} \Gamma\left(x\right) \gamma\left(x e^{i \pi}, e^{i \pi}\right)}{e}$$
-x*exp(-1)*exp(pi*i*x)*gamma(x)*lowergamma(x*exp_polar(pi*i), exp_polar(pi*i))

    Examples of finding the sum of a series