Mister Exam

Other calculators


factorial(n+1)/10^n

Sum of series factorial(n+1)/10^n



=

The solution

You have entered [src]
  oo          
____          
\   `         
 \    (n + 1)!
  \   --------
  /       n   
 /      10    
/___,         
n = 1         
$$\sum_{n=1}^{\infty} \frac{\left(n + 1\right)!}{10^{n}}$$
Sum(factorial(n + 1)/10^n, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\left(n + 1\right)!}{10^{n}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \left(n + 1\right)!$$
and
$$x_{0} = -10$$
,
$$d = -1$$
,
$$c = 0$$
then
$$\frac{1}{R} = \tilde{\infty} \left(-10 + \lim_{n \to \infty} \left|{\frac{\left(n + 1\right)!}{\left(n + 2\right)!}}\right|\right)$$
Let's take the limit
we find
False

$$R = 0$$
The rate of convergence of the power series
The answer [src]
  oo               
 ___               
 \  `              
  \     -n         
  /   10  *(1 + n)!
 /__,              
n = 1              
$$\sum_{n=1}^{\infty} 10^{- n} \left(n + 1\right)!$$
Sum(10^(-n)*factorial(1 + n), (n, 1, oo))
Numerical answer
The series diverges
The graph
Sum of series factorial(n+1)/10^n

    Examples of finding the sum of a series