Mister Exam

Other calculators

  • How to use it?

  • Sum of series:
  • 1/(n^2-3n+2) 1/(n^2-3n+2)
  • factorial(6*n)/(n-1) factorial(6*n)/(n-1)
  • 5/n^2 5/n^2
  • sin^2((n^4+5)/(n^5+4)) sin^2((n^4+5)/(n^5+4))
  • Identical expressions

  • factorial(n)*x^n/ two ^n
  • factorial(n) multiply by x to the power of n divide by 2 to the power of n
  • factorial(n) multiply by x to the power of n divide by two to the power of n
  • factorial(n)*xn/2n
  • factorialn*xn/2n
  • factorial(n)x^n/2^n
  • factorial(n)xn/2n
  • factorialnxn/2n
  • factorialnx^n/2^n
  • factorial(n)*x^n divide by 2^n

Sum of series factorial(n)*x^n/2^n



=

The solution

You have entered [src]
  oo       
____       
\   `      
 \        n
  \   n!*x 
   )  -----
  /      n 
 /      2  
/___,      
n = 1      
$$\sum_{n=1}^{\infty} \frac{x^{n} n!}{2^{n}}$$
Sum((factorial(n)*x^n)/2^n, (n, 1, oo))
The answer [src]
  oo           
 ___           
 \  `          
  \    -n  n   
  /   2  *x *n!
 /__,          
n = 1          
$$\sum_{n=1}^{\infty} 2^{- n} x^{n} n!$$
Sum(2^(-n)*x^n*factorial(n), (n, 1, oo))

    Examples of finding the sum of a series