Mister Exam

Other calculators


exp^(n^2)
  • How to use it?

  • Sum of series:
  • exp^(n^2) exp^(n^2)
  • sin(pi/2^n)
  • 1/(n*lnn) 1/(n*lnn)
  • (lnx-1)/(ln(x+1)-1)
  • Identical expressions

  • exp^(n^ two)
  • exponent of to the power of (n squared )
  • exponent of to the power of (n to the power of two)
  • exp(n2)
  • expn2
  • exp^(n²)
  • exp to the power of (n to the power of 2)
  • exp^n^2

Sum of series exp^(n^2)



=

The solution

You have entered [src]
  oo       
 ___       
 \  `      
  \    / 2\
   )   \n /
  /   E    
 /__,      
n = 1      
$$\sum_{n=1}^{\infty} e^{n^{2}}$$
Sum(E^(n^2), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$e^{n^{2}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = e^{n^{2}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(e^{n^{2}} e^{- \left(n + 1\right)^{2}}\right)$$
Let's take the limit
we find
False

False
The rate of convergence of the power series
The answer [src]
  oo       
 ___       
 \  `      
  \    / 2\
   )   \n /
  /   e    
 /__,      
n = 1      
$$\sum_{n=1}^{\infty} e^{n^{2}}$$
Sum(exp(n^2), (n, 1, oo))
The graph
Sum of series exp^(n^2)

    Examples of finding the sum of a series