Mister Exam

Other calculators


cos(sqrt(n))/n!

Sum of series cos(sqrt(n))/n!



=

The solution

You have entered [src]
  oo            
____            
\   `           
 \       /  ___\
  \   cos\\/ n /
  /   ----------
 /        n!    
/___,           
n = 1           
$$\sum_{n=1}^{\infty} \frac{\cos{\left(\sqrt{n} \right)}}{n!}$$
Sum(cos(sqrt(n))/factorial(n), (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\cos{\left(\sqrt{n} \right)}}{n!}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\cos{\left(\sqrt{n} \right)}}{n!}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty} \left|{\frac{\cos{\left(\sqrt{n} \right)} \left(n + 1\right)!}{\cos{\left(\sqrt{n + 1} \right)} n!}}\right|$$
Let's take the limit
we find
$$1 = \lim_{n \to \infty} \left|{\frac{\cos{\left(\sqrt{n} \right)} \left(n + 1\right)!}{\cos{\left(\sqrt{n + 1} \right)} n!}}\right|$$
False
The rate of convergence of the power series
Numerical answer [src]
0.567760881088685424494955274256
0.567760881088685424494955274256
The graph
Sum of series cos(sqrt(n))/n!

    Examples of finding the sum of a series