Mister Exam

Other calculators


(cos1/n)/n^2
  • How to use it?

  • Sum of series:
  • (2^n+(-1)^n)/5^n (2^n+(-1)^n)/5^n
  • 1/n^n 1/n^n
  • (-1/2)^n (-1/2)^n
  • n^2*sin(5/(3^n)) n^2*sin(5/(3^n))
  • Identical expressions

  • (cos1/n)/n^ two
  • ( co sinus of e of 1 divide by n) divide by n squared
  • ( co sinus of e of 1 divide by n) divide by n to the power of two
  • (cos1/n)/n2
  • cos1/n/n2
  • (cos1/n)/n²
  • (cos1/n)/n to the power of 2
  • cos1/n/n^2
  • (cos1 divide by n) divide by n^2

Sum of series (cos1/n)/n^2



=

The solution

You have entered [src]
  oo           
_____          
\    `         
 \     /cos(1)\
  \    |------|
   \   \  n   /
   /   --------
  /        2   
 /        n    
/____,         
n = 1          
$$\sum_{n=1}^{\infty} \frac{\frac{1}{n} \cos{\left(1 \right)}}{n^{2}}$$
Sum((cos(1)/n)/n^2, (n, 1, oo))
The radius of convergence of the power series
Given number:
$$\frac{\frac{1}{n} \cos{\left(1 \right)}}{n^{2}}$$
It is a series of species
$$a_{n} \left(c x - x_{0}\right)^{d n}$$
- power series.
The radius of convergence of a power series can be calculated by the formula:
$$R^{d} = \frac{x_{0} + \lim_{n \to \infty} \left|{\frac{a_{n}}{a_{n + 1}}}\right|}{c}$$
In this case
$$a_{n} = \frac{\cos{\left(1 \right)}}{n^{3}}$$
and
$$x_{0} = 0$$
,
$$d = 0$$
,
$$c = 1$$
then
$$1 = \lim_{n \to \infty}\left(\frac{\left(n + 1\right)^{3}}{n^{3}}\right)$$
Let's take the limit
we find
True

False
The rate of convergence of the power series
The answer [src]
cos(1)*zeta(3)
$$\cos{\left(1 \right)} \zeta\left(3\right)$$
cos(1)*zeta(3)
Numerical answer [src]
0.649474116561843915475121580529
0.649474116561843915475121580529
The graph
Sum of series (cos1/n)/n^2

    Examples of finding the sum of a series